The formula to calculate the maximum stress at the crack tip is:
\[ \sigma_{\text{max}} = k \cdot \sigma \]
Where:
The maximum stress at the crack tip is the maximum amount of stress at the tip of a crack.
The stress concentration factor is a measure of the degree to which external stress is amplified at the tip of a crack.
Applied stress is the stress applied to a material, denoted by the symbol \(\sigma\).
Let's assume the following values:
Using the formula:
\[ \sigma_{\text{max}} = 22 \cdot 93.3 \approx 2052.6 \, \text{Pascal} \]
The maximum stress at the crack tip is approximately 2052.6 Pascal.
Stress Concentration Factor | Applied Stress (Pascal) | Maximum Stress at Crack Tip (Pascal) |
---|---|---|
20 | 90 | 1,800.0000 |
20 | 91 | 1,820.0000 |
20 | 92 | 1,840.0000 |
20 | 93 | 1,860.0000 |
20 | 94 | 1,880.0000 |
20 | 95 | 1,900.0000 |
21 | 90 | 1,890.0000 |
21 | 91 | 1,911.0000 |
21 | 92 | 1,932.0000 |
21 | 93 | 1,953.0000 |
21 | 94 | 1,974.0000 |
21 | 95 | 1,995.0000 |
22 | 90 | 1,980.0000 |
22 | 91 | 2,002.0000 |
22 | 92 | 2,024.0000 |
22 | 93 | 2,046.0000 |
22 | 94 | 2,068.0000 |
22 | 95 | 2,090.0000 |
23 | 90 | 2,070.0000 |
23 | 91 | 2,093.0000 |
23 | 92 | 2,116.0000 |
23 | 93 | 2,139.0000 |
23 | 94 | 2,162.0000 |
23 | 95 | 2,185.0000 |
24 | 90 | 2,160.0000 |
24 | 91 | 2,184.0000 |
24 | 92 | 2,208.0000 |
24 | 93 | 2,232.0000 |
24 | 94 | 2,256.0000 |
24 | 95 | 2,280.0000 |
25 | 90 | 2,250.0000 |
25 | 91 | 2,275.0000 |
25 | 92 | 2,300.0000 |
25 | 93 | 2,325.0000 |
25 | 94 | 2,350.0000 |
25 | 95 | 2,375.0000 |