The formula to calculate the Median of an Equilateral Triangle is:
\[ M = \frac{\sqrt{3}}{2} l_e \]
The Median of an Equilateral Triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. The Edge Length of an Equilateral Triangle is the length of one of the sides of the Equilateral Triangle. In an Equilateral Triangle, all three sides are equal.
Let's assume the following value:
Using the formula:
\[ M = \frac{\sqrt{3}}{2} \times 8 = 6.92820323027551 \text{ Meter} \]
The Median of the Equilateral Triangle is 6.92820323027551 Meter.
Edge Length of Equilateral Triangle (Meter) | Median of Equilateral Triangle (Meter) |
---|---|
7 | 6.062177826491070 |
7.1 | 6.148780366869514 |
7.2 | 6.235382907247957 |
7.3 | 6.321985447626401 |
7.4 | 6.408587988004844 |
7.5 | 6.495190528383288 |
7.6 | 6.581793068761732 |
7.7 | 6.668395609140175 |
7.8 | 6.754998149518618 |
7.9 | 6.841600689897062 |
8 | 6.928203230275506 |
8.1 | 7.014805770653950 |
8.2 | 7.101408311032393 |
8.3 | 7.188010851410836 |
8.4 | 7.274613391789280 |
8.5 | 7.361215932167723 |
8.6 | 7.447818472546167 |
8.7 | 7.534421012924611 |
8.8 | 7.621023553303054 |
8.9 | 7.707626093681498 |
9 | 7.794228634059941 |