The formula to calculate Moment of Inertia (I) is:
\[ I = M \cdot r^2 \]
Where:
Moment of Inertia is the measure of the resistance of a body to angular acceleration about a given axis.
Mass of body is the quantity of matter in a body regardless of its volume or of any forces acting on it.
Radius of body is a radial line from the focus to any point of a curve.
Let's assume the following values:
Using the formula:
\[ I = M \cdot r^2 \]
Evaluating:
\[ I = 12.6 \cdot 2.1^2 \]
The Moment of Inertia is 55.566 kg·m².
Mass of Body (M, kg) | Radius of Body (r, m) | Moment of Inertia (I, kg·m²) |
---|---|---|
10 | 1.5 | 22.5000 |
10 | 1.7 | 28.9000 |
10 | 1.9 | 36.1000 |
10 | 2.1 | 44.1000 |
10 | 2.3 | 52.9000 |
11 | 1.5 | 24.7500 |
11 | 1.7 | 31.7900 |
11 | 1.9 | 39.7100 |
11 | 2.1 | 48.5100 |
11 | 2.3 | 58.1900 |
12 | 1.5 | 27.0000 |
12 | 1.7 | 34.6800 |
12 | 1.9 | 43.3200 |
12 | 2.1 | 52.9200 |
12 | 2.3 | 63.4800 |
13 | 1.5 | 29.2500 |
13 | 1.7 | 37.5700 |
13 | 1.9 | 46.9300 |
13 | 2.1 | 57.3300 |
13 | 2.3 | 68.7700 |
14 | 1.5 | 31.5000 |
14 | 1.7 | 40.4600 |
14 | 1.9 | 50.5400 |
14 | 2.1 | 61.7400 |
14 | 2.3 | 74.0600 |
15 | 1.5 | 33.7500 |
15 | 1.7 | 43.3500 |
15 | 1.9 | 54.1500 |
15 | 2.1 | 66.1500 |
15 | 2.3 | 79.3500 |