The formula to calculate the Number of Non Empty Proper Subsets of Set A is:
\[ N_{\text{Non Empty Proper}} = 2^{n(A)} - 2 \]
Where:
The Number of Non Empty Proper Subsets is the total count of subsets that are possible for a given set, each containing at least one element but not equal to the parent set.
Let's assume the following value:
Using the formula:
\[ N_{\text{Non Empty Proper}} = 2^{10} - 2 \]
Evaluating:
\[ N_{\text{Non Empty Proper}} = 1022 \]
The Number of Non Empty Proper Subsets is 1022.
Number of Elements in Set A (n(A)) | Number of Non Empty Proper Subsets (NNon Empty Proper) |
---|---|
8 | 254.000000000000 |
9 | 510.000000000000 |
10 | 1,022.000000000000 |
11 | 2,046.000000000000 |
12 | 4,094.000000000000 |