The formula to calculate Optical Path Difference is:
\[ \Delta = (RI - 1) \cdot t \cdot \frac{\beta}{\lambda} \]
Where:
Optical Path Difference is the difference in distance traveled by two light waves having the same frequency and initial phase but taking different paths to reach the same point.
Let's assume the following values:
Using the formula:
\[ \Delta = (1.333 - 1) \cdot 1 \cdot \frac{0.5107}{0.268} \]
Evaluating:
\[ \Delta = 0.634563805970149 \text{ m} \]
The Optical Path Difference is 0.634563805970149 m.
Refractive Index (RI) | Thickness (t) | Fringe Width (β) | Wavelength (λ) | Optical Path Difference (Δ, m) |
---|---|---|---|---|
1.3 | 1 | 0.5107 | 0.268 | 0.571679104478 |
1.31 | 1 | 0.5107 | 0.268 | 0.590735074627 |
1.32 | 1 | 0.5107 | 0.268 | 0.609791044776 |
1.33 | 1 | 0.5107 | 0.268 | 0.628847014925 |
1.34 | 1 | 0.5107 | 0.268 | 0.647902985075 |
1.35 | 1 | 0.5107 | 0.268 | 0.666958955224 |
1.36 | 1 | 0.5107 | 0.268 | 0.686014925373 |
1.37 | 1 | 0.5107 | 0.268 | 0.705070895522 |
1.38 | 1 | 0.5107 | 0.268 | 0.724126865672 |
1.39 | 1 | 0.5107 | 0.268 | 0.743182835821 |