The formula to calculate the Real Power in Single-Phase AC Circuits is:
\[ P = I^2 \cdot R \cdot \cos(\Phi) \]
Where:
Real Power is the average power in watts delivered to a load. It is the only useful power and is the actual power dissipated by the load.
Let's assume the following values:
Using the formula:
\[ P = I^2 \cdot R \cdot \cos(\Phi) \]
Evaluating:
\[ P = 2.1^2 \cdot 60 \cdot \cos(0.5235987755982) \]
The Real Power is 229.150321841362 watts.
Current (A) | Resistance (Ω) | Phase Difference (rad) | Real Power (W) |
---|---|---|---|
1 | 60 | 0.5235987755982 | 51.961524227069 |
1.5 | 60 | 0.5235987755982 | 116.913429510906 |
2 | 60 | 0.5235987755982 | 207.846096908277 |
2.5 | 60 | 0.5235987755982 | 324.759526419183 |
3 | 60 | 0.5235987755982 | 467.653718043624 |
3.5 | 60 | 0.5235987755982 | 636.528671781599 |
4 | 60 | 0.5235987755982 | 831.384387633109 |
4.5 | 60 | 0.5235987755982 | 1,052.220865598153 |
5 | 60 | 0.5235987755982 | 1,299.038105676732 |