The formula to calculate the Real Power is:
\[ P = I_{rms} \cdot V_{rms} \cdot \cos(\Phi) \]
Where:
The Real Power \(P\) is the average power in watts delivered to a load. It is the only useful power and is the actual power dissipated by the load.
Let's assume the following values:
Using the formula:
\[ P = 4.7 \cdot 57.5 \cdot \cos(0.5235987755982) \]
Evaluating:
\[ P = 234.043365372745 \text{ W} \]
The Real Power is 234.043365372745 W.
Root Mean Square Current (Irms, A) | Root Mean Square Voltage (Vrms, V) | Phase Difference (Φ, rad) | Real Power (P, W) |
---|---|---|---|
4.5 | 57.5 | 0.5235987755982 | 224.084073229236 |
4.6 | 57.5 | 0.5235987755982 | 229.063719300997 |
4.7 | 57.5 | 0.5235987755982 | 234.043365372758 |
4.8 | 57.5 | 0.5235987755982 | 239.023011444519 |
4.9 | 57.5 | 0.5235987755982 | 244.002657516279 |