The formula to calculate the Refractive Index (n) is:
\[ n = \frac{\sin(i)}{\sin(r)} \]
Where:
Refractive Index is a measure of how much a lens bends light, describing the amount of refraction that occurs when light passes from one medium to another.
Angle of Incidence is the angle at which a light ray or a beam of light strikes a surface, such as a lens, mirror, or prism, and is used to describe the orientation of the incident light.
Angle of Refraction is the angle formed by a refracted ray or wave and a line perpendicular to the refracting surface at the point of refraction.
Let's assume the following values:
Using the formula:
\[ n = \frac{\sin(i)}{\sin(r)} \]
Evaluating:
\[ n = \frac{\sin(0.698131700797601)}{\sin(0.526042236550992)} \]
The Refractive Index is 1.28016115024344.
Angle of Incidence (radians) | Angle of Refraction (radians) | Refractive Index |
---|---|---|
0.5 | 0.3 | 1.622310514805559 |
0.5 | 0.4 | 1.231132400600209 |
0.5 | 0.5 | 1.000000000000000 |
0.5 | 0.6 | 0.849078064782398 |
0.5 | 0.7 | 0.744198037560732 |
0.6 | 0.3 | 1.910672978251212 |
0.6 | 0.4 | 1.449963733211887 |
0.6 | 0.5 | 1.177748008666648 |
0.6 | 0.6 | 1.000000000000000 |
0.6 | 0.7 | 0.876477756790780 |
0.7 | 0.3 | 2.179944628882695 |
0.7 | 0.4 | 1.654307507495598 |
0.7 | 0.5 | 1.343728348542431 |
0.7 | 0.6 | 1.140930265773654 |
0.7 | 0.7 | 1.000000000000000 |
0.8 | 0.3 | 2.427434993376270 |
0.8 | 0.4 | 1.842121988005770 |
0.8 | 0.5 | 1.496282598937114 |
0.8 | 0.6 | 1.270460733473101 |
0.8 | 0.7 | 1.113530573765272 |
0.9 | 0.3 | 2.650671229819356 |
0.9 | 0.4 | 2.011530594536359 |
0.9 | 0.5 | 1.633886488208486 |
0.9 | 0.6 | 1.387297177482169 |
0.9 | 0.7 | 1.215935118121751 |
1 | 0.3 | 2.847422835529504 |
1 | 0.4 | 2.160840652289953 |
1 | 0.5 | 1.755165123780745 |
1 | 0.6 | 1.490272206673312 |
1 | 0.7 | 1.306190440712670 |