The formula to calculate the Scheffe Test Statistic (S) is:
\[ S = \frac{MSR}{MSE} \times (n - k) \]
Where:
A Scheffe Test is a statistical method used in analysis of variance (ANOVA) for conducting post hoc comparisons. It is used to determine the differences between group means after a null hypothesis has been rejected in an ANOVA test. The Scheffe Test is conservative and controls the experiment-wise error rate, making it suitable for all possible comparisons, including pairwise and complex contrasts. It is named after the American statistician Henry Scheffé.
Let's assume the following values:
Using the formula:
\[ S = \frac{25}{5} \times (30 - 3) = 5 \times 27 = 135 \]
The Scheffe Test Statistic (S) is 135.