The formula to calculate the Second Root of Quadratic Equation is:
\[ x_2 = \frac{-(b) - \sqrt{b^2 - 4ac}}{2a} \]
Where:
The Second Root of Quadratic Equation is the value of one of the variables satisfying the given quadratic equation \(f(x)\), such that \(f(x_2) = 0\).
Let's assume the following values:
Using the formula:
\[ x_2 = \frac{-(8) - \sqrt{8^2 - 4 \cdot 2 \cdot (-42)}}{2 \cdot 2} \]
Evaluating:
\[ x_2 = -7 \]
The Second Root of the Quadratic Equation is -7.
Numerical Coefficient a | Numerical Coefficient b | Numerical Coefficient c | Second Root |
---|---|---|---|
1 | 6 | -42 | -10.14 |
1 | 8 | -42 | -11.62 |
1 | 10 | -42 | -13.19 |
2 | 6 | -42 | -6.32 |
2 | 8 | -42 | -7.00 |
2 | 10 | -42 | -7.72 |
3 | 6 | -42 | -4.87 |
3 | 8 | -42 | -5.31 |
3 | 10 | -42 | -5.76 |