The formula to calculate the Shear Angle (τ) is:
\[ \tau = \tan^{-1} \left( \frac{w \cos(\theta)}{1 - w \sin(\theta)} \right) \]
Shear angle metal is the inclination of the shear plane with the horizontal axis at the machining point.
Width is the measurement or extent of something from side to side.
Theta is an angle that can be defined as the figure formed by two rays meeting at a common endpoint.
Let's assume the following values:
Using the formula:
\[ \tau = \tan^{-1} \left( \frac{0.255 \cos(0.5235987755982)}{1 - 0.255 \sin(0.5235987755982)} \right) \approx 0.247901422197684 \]
The Shear Angle is approximately 0.247901422197684 rad.
Width (m) | Theta (rad) | Shear Angle (rad) |
---|---|---|
0.2 | 0.5235987755982 | 0.19012560334647 |
0.21 | 0.5235987755982 | 0.20047201316023 |
0.22 | 0.5235987755982 | 0.21089061360140 |
0.23 | 0.5235987755982 | 0.22137987767804 |
0.24 | 0.5235987755982 | 0.23193819543709 |
0.25 | 0.5235987755982 | 0.24256387409549 |
0.26 | 0.5235987755982 | 0.25325513838020 |
0.27 | 0.5235987755982 | 0.26401013108402 |
0.28 | 0.5235987755982 | 0.27482691384352 |
0.29 | 0.5235987755982 | 0.28570346814407 |