The formula to calculate Side A (Sa) of a Triangle is:
\[ Sa = \sqrt{Sb^2 + Sc^2 - 2 \cdot Sb \cdot Sc \cdot \cos(\angle A)} \]
Where:
Side A of a Triangle is the length of the side opposite to Angle A.
Let's assume the following values:
Using the formula:
\[ Sa = \sqrt{14^2 + 20^2 - 2 \cdot 14 \cdot 20 \cdot \cos(0.5235987755982)} \]
Evaluating:
\[ Sa = 10.54 \text{ meters} \]
Side A is 10.54 meters.
Side B | Side C | Angle A (radians) | Side A |
---|---|---|---|
13 | 19 | 0.50 | 9.82 |
13 | 19 | 0.51 | 9.94 |
13 | 19 | 0.52 | 10.06 |
13 | 19 | 0.53 | 10.19 |
13 | 19 | 0.54 | 10.31 |
13 | 19 | 0.55 | 10.43 |
13 | 20 | 0.50 | 10.61 |
13 | 20 | 0.51 | 10.73 |
13 | 20 | 0.52 | 10.85 |
13 | 20 | 0.53 | 10.97 |
13 | 20 | 0.54 | 11.09 |
13 | 20 | 0.55 | 11.21 |
13 | 21 | 0.50 | 11.44 |
13 | 21 | 0.51 | 11.55 |
13 | 21 | 0.52 | 11.67 |
13 | 21 | 0.53 | 11.79 |
13 | 21 | 0.54 | 11.90 |
13 | 21 | 0.55 | 12.02 |
14 | 19 | 0.50 | 9.49 |
14 | 19 | 0.51 | 9.63 |
14 | 19 | 0.52 | 9.76 |
14 | 19 | 0.53 | 9.90 |
14 | 19 | 0.54 | 10.03 |
14 | 19 | 0.55 | 10.17 |
14 | 20 | 0.50 | 10.23 |
14 | 20 | 0.51 | 10.36 |
14 | 20 | 0.52 | 10.49 |
14 | 20 | 0.53 | 10.62 |
14 | 20 | 0.54 | 10.76 |
14 | 20 | 0.55 | 10.89 |
14 | 21 | 0.50 | 11.00 |
14 | 21 | 0.51 | 11.13 |
14 | 21 | 0.52 | 11.26 |
14 | 21 | 0.53 | 11.39 |
14 | 21 | 0.54 | 11.52 |
14 | 21 | 0.55 | 11.65 |
15 | 19 | 0.50 | 9.26 |
15 | 19 | 0.51 | 9.41 |
15 | 19 | 0.52 | 9.56 |
15 | 19 | 0.53 | 9.71 |
15 | 19 | 0.54 | 9.85 |
15 | 19 | 0.55 | 10.00 |
15 | 20 | 0.50 | 9.92 |
15 | 20 | 0.51 | 10.07 |
15 | 20 | 0.52 | 10.21 |
15 | 20 | 0.53 | 10.36 |
15 | 20 | 0.54 | 10.51 |
15 | 20 | 0.55 | 10.65 |
15 | 21 | 0.50 | 10.64 |
15 | 21 | 0.51 | 10.78 |
15 | 21 | 0.52 | 10.92 |
15 | 21 | 0.53 | 11.06 |
15 | 21 | 0.54 | 11.21 |
15 | 21 | 0.55 | 11.35 |