The formula to calculate the Strain Energy given Applied Tension Load is:
\[ U = \frac{W^2 \cdot L}{2 \cdot A \cdot E} \]
Where:
The Strain Energy is defined as the energy stored in a body due to deformation.
Let's assume the following values:
Using the formula:
\[ U = \frac{452^2 \cdot 3.2873}{2 \cdot 10 \cdot 15} \]
Evaluating:
\[ U = 2238.69513066667 \text{ J} \]
The Strain Energy given the Applied Tension Load is 2238.69513066667 J.
Load (N) | Length (m) | Area of Base (m²) | Young's Modulus (N/m²) | Strain Energy (J) |
---|---|---|---|---|
400 | 3.2873 | 10 | 15 | 1,753.226666666667 |
410 | 3.2873 | 10 | 15 | 1,841.983766666667 |
420 | 3.2873 | 10 | 15 | 1,932.932400000000 |
430 | 3.2873 | 10 | 15 | 2,026.072566666667 |
440 | 3.2873 | 10 | 15 | 2,121.404266666667 |
450 | 3.2873 | 10 | 15 | 2,218.927500000000 |
460 | 3.2873 | 10 | 15 | 2,318.642266666667 |
470 | 3.2873 | 10 | 15 | 2,420.548566666667 |
480 | 3.2873 | 10 | 15 | 2,524.646400000000 |
490 | 3.2873 | 10 | 15 | 2,630.935766666666 |
500 | 3.2873 | 10 | 15 | 2,739.416666666667 |