The formula to calculate the Strain Hardening Exponent (n) is:
\[ n = \frac{\ln(\sigma_T) - \ln(K)}{\ln(\epsilon_T)} \]
Where:
The Strain Hardening Exponent (n) in power law approximates the region of the true stress–strain curve from the onset of plastic deformation to the point at which necking begins.
True Stress is defined as the load divided by the instantaneous cross-sectional area.
K Value in power law approximates the region of the true stress–strain curve from the onset of plastic deformation to the point at which necking begins.
True Strain is the instantaneous elongation per unit length.
Let's assume the following values:
Using the formula:
\[ n = \frac{\ln(10,000,000) - \ln(600,000,000)}{\ln(0.01)} \]
Evaluating:
\[ n \approx 0.889075625191822 \]
The Strain Hardening Exponent is approximately 0.889075625191822.
True Stress (σT) (Pa) | K Value (K) (Pa) | True Strain (εT) | Strain Hardening Exponent (n) |
---|---|---|---|
10000000 | 600000000 | 0.01 | 0.889075625192 |
10000000 | 600000000 | 0.02 | 1.046605440853 |
10000000 | 600000000 | 0.03 | 1.167624970730 |
10000000 | 700000000 | 0.01 | 0.922549020007 |
10000000 | 700000000 | 0.02 | 1.086009779634 |
10000000 | 700000000 | 0.03 | 1.211585653640 |
10000000 | 800000000 | 0.01 | 0.951544993496 |
10000000 | 800000000 | 0.02 | 1.120143370474 |
10000000 | 800000000 | 0.03 | 1.249666129290 |
20000000 | 600000000 | 0.01 | 0.738560627360 |
20000000 | 600000000 | 0.02 | 0.869421620717 |
20000000 | 600000000 | 0.03 | 0.969953293588 |
20000000 | 700000000 | 0.01 | 0.772034022175 |
20000000 | 700000000 | 0.02 | 0.908825959499 |
20000000 | 700000000 | 0.03 | 1.013913976497 |
20000000 | 800000000 | 0.01 | 0.801029995664 |
20000000 | 800000000 | 0.02 | 0.942959550339 |
20000000 | 800000000 | 0.03 | 1.051994452147 |
30000000 | 600000000 | 0.01 | 0.650514997832 |
30000000 | 600000000 | 0.02 | 0.765775730203 |
30000000 | 600000000 | 0.03 | 0.854322775005 |
30000000 | 700000000 | 0.01 | 0.683988392647 |
30000000 | 700000000 | 0.02 | 0.805180068985 |
30000000 | 700000000 | 0.03 | 0.898283457914 |
30000000 | 800000000 | 0.01 | 0.712984366136 |
30000000 | 800000000 | 0.02 | 0.839313659825 |
30000000 | 800000000 | 0.03 | 0.936363933564 |