The formula to calculate the Total Surface Area of Capsule is:
\[ \text{Total Surface Area of Capsule} = (2 \pi \text{rSphere}) \left( (2 \text{rSphere}) + \text{hCylinder} \right) \]
Where:
Total Surface Area of Capsule is defined as the measure of the total amount of 2D space enclosed by all the faces of the Capsule.
Let's assume the following values:
Using the formula:
\[ \text{Total Surface Area of Capsule} = (2 \pi \times 5) \left( (2 \times 5) + 10 \right) \]
Evaluating:
\[ \text{Total Surface Area of Capsule} = (2 \pi \times 5) \left( 10 + 10 \right) \]
\[ \text{Total Surface Area of Capsule} = (2 \pi \times 5) \times 20 \]
\[ \text{Total Surface Area of Capsule} = 628.318530717959 \]
The Total Surface Area of Capsule is approximately 628.318530717959 square meters.
Sphere Radius (m) | Cylinder Height (m) | Total Surface Area (square meters) |
---|---|---|
1 | 1 | 18.849555921539 |
1 | 3 | 31.415926535898 |
1 | 5 | 43.982297150257 |
1 | 7 | 56.548667764616 |
1 | 9 | 69.115038378975 |
1 | 11 | 81.681408993335 |
1 | 13 | 94.247779607694 |
1 | 15 | 106.814150222053 |
1 | 17 | 119.380520836412 |
1 | 19 | 131.946891450771 |
2 | 1 | 62.831853071796 |
2 | 3 | 87.964594300514 |
2 | 5 | 113.097335529233 |
2 | 7 | 138.230076757951 |
2 | 9 | 163.362817986669 |
2 | 11 | 188.495559215388 |
2 | 13 | 213.628300444106 |
2 | 15 | 238.761041672824 |
2 | 17 | 263.893782901543 |
2 | 19 | 289.026524130261 |
3 | 1 | 131.946891450771 |
3 | 3 | 169.646003293849 |
3 | 5 | 207.345115136926 |
3 | 7 | 245.044226980004 |
3 | 9 | 282.743338823081 |
3 | 11 | 320.442450666159 |
3 | 13 | 358.141562509236 |
3 | 15 | 395.840674352314 |
3 | 17 | 433.539786195391 |
3 | 19 | 471.238898038469 |
4 | 1 | 226.194671058465 |
4 | 3 | 276.460153515902 |
4 | 5 | 326.725635973339 |
4 | 7 | 376.991118430775 |
4 | 9 | 427.256600888212 |
4 | 11 | 477.522083345649 |
4 | 13 | 527.787565803085 |
4 | 15 | 578.053048260522 |
4 | 17 | 628.318530717959 |
4 | 19 | 678.584013175395 |
5 | 1 | 345.575191894877 |
5 | 3 | 408.407044966673 |
5 | 5 | 471.238898038469 |
5 | 7 | 534.070751110265 |
5 | 9 | 596.902604182061 |
5 | 11 | 659.734457253857 |
5 | 13 | 722.566310325653 |
5 | 15 | 785.398163397448 |
5 | 17 | 848.230016469244 |
5 | 19 | 911.061869541040 |
6 | 1 | 490.088453960008 |
6 | 3 | 565.486677646163 |
6 | 5 | 640.884901332318 |
6 | 7 | 716.283125018473 |
6 | 9 | 791.681348704628 |
6 | 11 | 867.079572390783 |
6 | 13 | 942.477796076938 |
6 | 15 | 1,017.876019763093 |
6 | 17 | 1,093.274243449248 |
6 | 19 | 1,168.672467135403 |
7 | 1 | 659.734457253857 |
7 | 3 | 747.699051554371 |
7 | 5 | 835.663645854885 |
7 | 7 | 923.628240155399 |
7 | 9 | 1,011.592834455913 |
7 | 11 | 1,099.557428756427 |
7 | 13 | 1,187.522023056942 |
7 | 15 | 1,275.486617357456 |
7 | 17 | 1,363.451211657970 |
7 | 19 | 1,451.415805958484 |
8 | 1 | 854.513201776424 |
8 | 3 | 955.044166691297 |
8 | 5 | 1,055.575131606171 |
8 | 7 | 1,156.106096521044 |
8 | 9 | 1,256.637061435917 |
8 | 11 | 1,357.168026350791 |
8 | 13 | 1,457.698991265664 |
8 | 15 | 1,558.229956180537 |
8 | 17 | 1,658.760921095411 |
8 | 19 | 1,759.291886010284 |
9 | 1 | 1,074.424687527709 |
9 | 3 | 1,187.522023056942 |
9 | 5 | 1,300.619358586174 |
9 | 7 | 1,413.716694115407 |
9 | 9 | 1,526.814029644640 |
9 | 11 | 1,639.911365173872 |
9 | 13 | 1,753.008700703105 |
9 | 15 | 1,866.106036232337 |
9 | 17 | 1,979.203371761570 |
9 | 19 | 2,092.300707290802 |
10 | 1 | 1,319.468914507713 |
10 | 3 | 1,445.132620651305 |
10 | 5 | 1,570.796326794896 |
10 | 7 | 1,696.460032938488 |
10 | 9 | 1,822.123739082080 |
10 | 11 | 1,947.787445225672 |
10 | 13 | 2,073.451151369263 |
10 | 15 | 2,199.114857512855 |
10 | 17 | 2,324.778563656447 |
10 | 19 | 2,450.442269800039 |