The formula to calculate the Tensile Strain (εtension) is:
\[ \epsilon_{\text{tension}} = \frac{\Delta L}{L} \]
The Tension Strain is the ratio of change in length to original length when the body is subjected to tension.
Change in Length is the change in the dimensions of the object after the application of force.
Length is the measurement or extent of something from end to end.
Let's assume the following values:
Using the formula:
\[ \epsilon_{\text{tension}} = \frac{1.1}{3.2873} \approx 0.334621117634533 \]
The Tensile Strain is approximately 0.334621117634533.
Change in Length (m) | Length (m) | Tensile Strain |
---|---|---|
1 | 3.2873 | 0.30420101603139 |
1.01 | 3.2873 | 0.30724302619171 |
1.02 | 3.2873 | 0.31028503635202 |
1.03 | 3.2873 | 0.31332704651234 |
1.04 | 3.2873 | 0.31636905667265 |
1.05 | 3.2873 | 0.31941106683296 |
1.06 | 3.2873 | 0.32245307699328 |
1.07 | 3.2873 | 0.32549508715359 |
1.08 | 3.2873 | 0.32853709731391 |
1.09 | 3.2873 | 0.33157910747422 |
1.1 | 3.2873 | 0.33462111763453 |
1.11 | 3.2873 | 0.33766312779485 |
1.12 | 3.2873 | 0.34070513795516 |
1.13 | 3.2873 | 0.34374714811548 |
1.14 | 3.2873 | 0.34678915827579 |
1.15 | 3.2873 | 0.34983116843610 |
1.16 | 3.2873 | 0.35287317859642 |
1.17 | 3.2873 | 0.35591518875673 |
1.18 | 3.2873 | 0.35895719891704 |
1.19 | 3.2873 | 0.36199920907736 |