The formula to calculate the Thermal Diffusivity (α) is:
\[ \alpha = \frac{k}{\rho \cdot C_o} \]
Thermal Diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. Thermal Conductivity is the rate at which heat passes through a specified material. Density is the mass per unit volume of a given object. Specific Heat Capacity is the heat required to raise the temperature of the unit mass of a given substance by a given amount.
Let's assume the following values:
Using the formula:
\[ \alpha = \frac{10.18}{5.51 \cdot 4} \approx 0.461887477313975 \]
The Thermal Diffusivity is approximately 0.461887477313975 m²/s.
Thermal Conductivity (W/m·K) | Density (kg/m³) | Specific Heat Capacity (J/kg·K) | Thermal Diffusivity (m²/s) |
---|---|---|---|
5 | 5.51 | 4 | 0.226860254083 |
6 | 5.51 | 4 | 0.272232304900 |
7 | 5.51 | 4 | 0.317604355717 |
8 | 5.51 | 4 | 0.362976406534 |
9 | 5.51 | 4 | 0.408348457350 |
10 | 5.51 | 4 | 0.453720508167 |
11 | 5.51 | 4 | 0.499092558984 |
12 | 5.51 | 4 | 0.544464609800 |
13 | 5.51 | 4 | 0.589836660617 |
14 | 5.51 | 4 | 0.635208711434 |
15 | 5.51 | 4 | 0.680580762250 |