The formula to calculate the Top Area of a Triangular Prism is:
\[ A_{Top} = \frac{1}{4} \sqrt{(Sa + Sb + Sc) \cdot (Sb + Sc - Sa) \cdot (Sb + Sa - Sc) \cdot (Sc + Sa - Sb)} \]
The Top Area of a Triangular Prism is the total amount of two-dimensional space occupied by the top face of the prism. The Side A, Side B, and Side C of the Base are the lengths of the sides of the base of the prism.
Let's assume the following values:
Using the formula:
\[ A_{Top} = \frac{1}{4} \sqrt{(10 + 14 + 20) \cdot (14 + 20 - 10) \cdot (14 + 10 - 20) \cdot (20 + 10 - 14)} = 64.9923072370877 \]
The Top Area of the Triangular Prism is 64.9923072370877 square meters.
Side A of Base (meters) | Side B of Base (meters) | Side C of Base (meters) | Top Area (square meters) |
---|---|---|---|
9 | 14 | 20 | 54.985793619806927 |
9.5 | 14 | 20 | 60.112882094855507 |
10 | 14 | 20 | 64.992307237087687 |
10.5 | 14 | 20 | 69.663000177640924 |
11 | 14 | 20 | 74.151449749819463 |