The formula to calculate the Total Surface Area of an Equilateral Square Pyramid is:
\[ \text{TSA} = (1 + \sqrt{3}) \times l_e^2 \]
The Total Surface Area of an Equilateral Square Pyramid is the total amount of two-dimensional space occupied on all the faces of the Equilateral Square Pyramid. The Edge Length of an Equilateral Square Pyramid is the length of the straight line connecting any two adjacent points of the Equilateral Square Pyramid.
Let's assume the following value:
Using the formula:
\[ \text{TSA} = (1 + \sqrt{3}) \times 10^2 = 273.205080756888 \text{ Square Meter} \]
The Total Surface Area of the Equilateral Square Pyramid is 273.205080756888 Square Meter.
Edge Length (Meter) | Total Surface Area (Square Meter) |
---|---|
9 | 221.296115413079065 |
9.1 | 226.241127374778699 |
9.2 | 231.240780352629741 |
9.3 | 236.295074346632134 |
9.4 | 241.404009356785906 |
9.5 | 246.567585383091085 |
9.6 | 251.785802425547587 |
9.7 | 257.058660484155496 |
9.8 | 262.386159558914812 |
9.9 | 267.768299649825451 |
10 | 273.205080756887526 |
10.1 | 278.696502880100923 |
10.2 | 284.242566019465755 |
10.3 | 289.843270174981910 |
10.4 | 295.498615346649501 |
10.5 | 301.208601534468414 |
10.6 | 306.973228738438706 |
10.7 | 312.792496958560378 |
10.8 | 318.666406194833428 |
10.9 | 324.594956447257857 |
11 | 330.578147715833722 |