The formula to calculate the Total Torque is:
\[ T = W \cdot \tan(\psi + \Phi) \cdot \frac{d_m}{2} + \mu_c \cdot W \cdot R_c \]
Total Torque is the measure of the force that can cause an object to rotate about an axis. Force is what causes an object to accelerate in linear kinematics.
Let's assume the following values:
Using the formula:
\[ T = 120 \cdot \tan(0.4363323129985 + 0.03490658503988) \cdot \frac{1.7}{2} + 0.16 \cdot 120 \cdot 0.02 = 52.3555958484203 \text{ Nm} \]
Weight of Body (W) | Helix Angle (ψ) | Limiting Angle of Friction (Φ) | Mean Diameter of Screw (dm) | Coefficient of Friction For Collar (μc) | Mean Radius of Collar (Rc) | Total Torque (T) |
---|---|---|---|---|---|---|
115 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 50.174112688070 Nm |
116 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 50.610409320140 Nm |
117 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 51.046705952210 Nm |
118 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 51.483002584280 Nm |
119 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 51.919299216350 Nm |
120 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 52.355595848420 Nm |
121 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 52.791892480491 Nm |
122 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 53.228189112561 Nm |
123 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 53.664485744631 Nm |
124 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 54.100782376701 Nm |
125 N | 0.4363323129985 rad | 0.03490658503988 rad | 1.7 m | 0.16 | 0.02 m | 54.537079008771 Nm |