To calculate the values of a unit circle:
\[ \sin(X) = \sin(\theta) \]
\[ \cos(X) = \cos(\theta) \]
\[ \tan(X) = \tan(\theta) \]
Where:
A unit circle is defined as any circle with a radius of 1 unit. It is commonly used in trigonometry to define the sine, cosine, and tangent functions for all real numbers.
Let's assume the following value:
Using the formula:
\[ \sin(45^\circ) = \sin\left(\frac{\pi}{4}\right) \approx 0.7071 \]
\[ \cos(45^\circ) = \cos\left(\frac{\pi}{4}\right) \approx 0.7071 \]
\[ \tan(45^\circ) = \tan\left(\frac{\pi}{4}\right) \approx 1 \]
The sine, cosine, and tangent values are approximately 0.7071, 0.7071, and 1, respectively.
Let's assume the following value:
Using the formula:
\[ \sin(90^\circ) = \sin\left(\frac{\pi}{2}\right) = 1 \]
\[ \cos(90^\circ) = \cos\left(\frac{\pi}{2}\right) = 0 \]
\[ \tan(90^\circ) = \tan\left(\frac{\pi}{2}\right) \text{ is undefined} \]
The sine, cosine, and tangent values are 1, 0, and undefined, respectively.