The formula to calculate the Volume of an Equilateral Square Pyramid is:
\[ V = \frac{\sqrt{2}}{6} l_e^3 \]
The Volume of an Equilateral Square Pyramid is the total quantity of three-dimensional space enclosed by the surface of the Equilateral Square Pyramid. The Edge Length of an Equilateral Square Pyramid is the length of the straight line connecting any two adjacent points of the Equilateral Square Pyramid.
Let's assume the following value:
Using the formula:
\[ V = \frac{\sqrt{2}}{6} \times 10^3 = 235.702260395516 \text{ Cubic Meter} \]
The Volume of the Equilateral Square Pyramid is 235.702260395516 Cubic Meter.
Edge Length (Meter) | Volume (Cubic Meter) |
---|---|
9 | 171.826947828331072 |
9.1 | 177.618388068509262 |
9.2 | 183.538521742863423 |
9.3 | 189.588763064955884 |
9.4 | 195.770526248349057 |
9.5 | 202.085225506605298 |
9.6 | 208.534275053286990 |
9.7 | 215.119089101956490 |
9.8 | 221.841081866176182 |
9.9 | 228.701667559508422 |
10 | 235.702260395515623 |
10.1 | 242.844274587760111 |
10.2 | 250.129124349804300 |
10.3 | 257.558223895210517 |
10.4 | 265.132987437541203 |
10.5 | 272.854829190358600 |
10.6 | 280.725163367225264 |
10.7 | 288.745404181703464 |
10.8 | 296.916965847355527 |
10.9 | 305.241262577743953 |
11 | 313.719708586431011 |