The formula to calculate the Volume of a Hemisphere is:
\[ \text{Volume of Hemisphere} = \frac{2}{3} \pi r^3 \]
Where:
Volume of Hemisphere is the total quantity of three-dimensional space enclosed by the surface of the Hemisphere.
Let's assume the following value:
Using the formula:
\[ \text{Volume of Hemisphere} = \frac{2}{3} \pi \times 5^3 \]
Evaluating:
\[ \text{Volume of Hemisphere} = \frac{2}{3} \pi \times 125 \]
\[ \text{Volume of Hemisphere} = \frac{250}{3} \pi \]
\[ \text{Volume of Hemisphere} = 261.799387799149 \]
The Volume of the Hemisphere is approximately 261.799387799149 cubic meters.
| Radius of Hemisphere (meters) | Volume of Hemisphere (cubic meters) | 
|---|---|
| 1 | 2.094395102393 | 
| 2 | 16.755160819146 | 
| 3 | 56.548667764616 | 
| 4 | 134.041286553165 | 
| 5 | 261.799387799149 | 
| 6 | 452.389342116930 | 
| 7 | 718.377520120866 | 
| 8 | 1,072.330292425316 | 
| 9 | 1,526.814029644639 | 
| 10 | 2,094.395102393195 | 
| 11 | 2,787.639881285343 | 
| 12 | 3,619.114736935441 | 
| 13 | 4,601.386039957850 | 
| 14 | 5,747.020160966928 | 
| 15 | 7,068.583470577034 | 
| 16 | 8,578.642339402528 | 
| 17 | 10,289.763138057768 | 
| 18 | 12,214.512237157114 | 
| 19 | 14,365.456007314926 | 
| 20 | 16,755.160819145563 |