The formula to calculate the Volume of a Hemisphere is:
\[ \text{Volume of Hemisphere} = \frac{2}{3} \pi r^3 \]
Where:
Volume of Hemisphere is the total quantity of three-dimensional space enclosed by the surface of the Hemisphere.
Let's assume the following value:
Using the formula:
\[ \text{Volume of Hemisphere} = \frac{2}{3} \pi \times 5^3 \]
Evaluating:
\[ \text{Volume of Hemisphere} = \frac{2}{3} \pi \times 125 \]
\[ \text{Volume of Hemisphere} = \frac{250}{3} \pi \]
\[ \text{Volume of Hemisphere} = 261.799387799149 \]
The Volume of the Hemisphere is approximately 261.799387799149 cubic meters.
Radius of Hemisphere (meters) | Volume of Hemisphere (cubic meters) |
---|---|
1 | 2.094395102393 |
2 | 16.755160819146 |
3 | 56.548667764616 |
4 | 134.041286553165 |
5 | 261.799387799149 |
6 | 452.389342116930 |
7 | 718.377520120866 |
8 | 1,072.330292425316 |
9 | 1,526.814029644639 |
10 | 2,094.395102393195 |
11 | 2,787.639881285343 |
12 | 3,619.114736935441 |
13 | 4,601.386039957850 |
14 | 5,747.020160966928 |
15 | 7,068.583470577034 |
16 | 8,578.642339402528 |
17 | 10,289.763138057768 |
18 | 12,214.512237157114 |
19 | 14,365.456007314926 |
20 | 16,755.160819145563 |