The formula to calculate the flow rate of a rectangular weir is:
\[ Q = 3.247 \times L \times H^{1.48} - \left( \frac{0.566 \times L^{1.9}}{1 + 2 \times L^{1.87}} \right) \times H^{1.9} \]
Where:
Weir flow is defined as the volumetric flow rate of water out of a rectangular weir with a given width of the weir and the height of the water above the weir.
Let's assume the following values:
Using the formula:
\[ Q = 3.247 \times 5 \times 2^{1.48} - \left( \frac{0.566 \times 5^{1.9}}{1 + 2 \times 5^{1.87}} \right) \times 2^{1.9} \approx 3.247 \times 5 \times 2.7545 - \left( \frac{0.566 \times 16.925}{1 + 2 \times 57.874} \right) \times 3.317 \approx 44.764 - 0.156 \approx 44.206 \text{ ft³/s} \]
The Flow Rate is approximately 44.206 ft³/s.
Let's assume the following values:
Using the formula:
\[ Q = 3.247 \times 3 \times 1.5^{1.48} - \left( \frac{0.566 \times 3^{1.9}}{1 + 2 \times 3^{1.87}} \right) \times 1.5^{1.9} \approx 3.247 \times 3 \times 1.8375 - \left( \frac{0.566 \times 7.69}{1 + 2 \times 15.45} \right) \times 2.129 \approx 17.868 - 0.090 \approx 17.157 \text{ ft³/s} \]
The Flow Rate is approximately 17.157 ft³/s.