The formula to calculate the X Coordinate of Centroid of Trapezoid (Gx) is:
\[ G_x = \left( \frac{B_{\text{Long}} + 2B_{\text{Short}}}{3(B_{\text{Short}} + B_{\text{Long}})} \right) \cdot h \]
Where:
X Coordinate of Centroid of Trapezoid is the horizontal position of centroid of the Trapezoid in 2D plane when the left most acute angle corner is at origin.
Long Base of Trapezoid is the longer side among the pair of parallel sides of the Trapezoid.
Short Base of Trapezoid is the shorter side among the pair of parallel sides of the Trapezoid.
Height of Trapezoid is the perpendicular distance between the pair of parallel sides of the Trapezoid.
Let's assume the following values:
Using the formula:
\[ G_x = \left( \frac{B_{\text{Long}} + 2B_{\text{Short}}}{3(B_{\text{Short}} + B_{\text{Long}})} \right) \cdot h \]
Evaluating:
\[ G_x = \left( \frac{15 + 2 \cdot 5}{3(5 + 15)} \right) \cdot 8 \]
The X Coordinate of Centroid of Trapezoid is 3.33333333333333.
Long Base of Trapezoid | Short Base of Trapezoid | Height of Trapezoid | X Coordinate of Centroid of Trapezoid |
---|---|---|---|
1 | 5 | 8 | 4.88888888888889 |
2 | 5 | 8 | 4.57142857142857 |
3 | 5 | 8 | 4.33333333333333 |
4 | 5 | 8 | 4.14814814814815 |
5 | 5 | 8 | 4.00000000000000 |
6 | 5 | 8 | 3.87878787878788 |
7 | 5 | 8 | 3.77777777777778 |
8 | 5 | 8 | 3.69230769230769 |
9 | 5 | 8 | 3.61904761904762 |
10 | 5 | 8 | 3.55555555555556 |
11 | 5 | 8 | 3.50000000000000 |
12 | 5 | 8 | 3.45098039215686 |
13 | 5 | 8 | 3.40740740740741 |
14 | 5 | 8 | 3.36842105263158 |
15 | 5 | 8 | 3.33333333333333 |
16 | 5 | 8 | 3.30158730158730 |
17 | 5 | 8 | 3.27272727272727 |
18 | 5 | 8 | 3.24637681159420 |
19 | 5 | 8 | 3.22222222222222 |
20 | 5 | 8 | 3.20000000000000 |