The formula to calculate the Delta network resistances (R1, R2, R3) is:
\[ R1 = \frac{Z}{R4}, \quad R2 = \frac{Z}{R5}, \quad R3 = \frac{Z}{R6} \]
Where:
\[ Z = (R4 \cdot R5) + (R5 \cdot R6) + (R6 \cdot R4) \]
Let's say the resistances in the Y network are R4 = 10 Ω, R5 = 20 Ω, and R6 = 30 Ω. Using the formula:
\[ Z = (10 \cdot 20) + (20 \cdot 30) + (30 \cdot 10) = 200 + 600 + 300 = 1100 \]
\[ R1 = \frac{1100}{10} = 110 \, \Omega, \quad R2 = \frac{1100}{20} = 55 \, \Omega, \quad R3 = \frac{1100}{30} \approx 36.67 \, \Omega \]
So, the resistances in the Delta network are approximately R1 = 110 Ω, R2 = 55 Ω, and R3 = 36.67 Ω.