The formula to calculate Young's Modulus (E) is:
\[ E = \frac{\sigma}{\epsilon} \]
Where:
Young's Modulus is a fundamental mechanical property that indicates how much a material will deform under a given load.
Stress is the internal force per unit area within a material that arises from externally applied forces, temperature changes, or other factors.
Strain is a measure of deformation representing the displacement between particles in a material body.
Let's assume the following values:
Using the formula:
\[ E = \frac{\sigma}{\epsilon} \]
Evaluating:
\[ E = \frac{1200}{0.4} \]
The Young's Modulus is 3000 Newton per Meter.
Stress (Pascal) | Strain | Young's Modulus (Newton per Meter) |
---|---|---|
1000 | 0.3 | 3,333.333333333333485 |
1000 | 0.35 | 2,857.142857142857338 |
1000 | 0.4 | 2,500.000000000000000 |
1000 | 0.45 | 2,222.222222222222626 |
1000 | 0.5 | 2,000.000000000000227 |
1100 | 0.3 | 3,666.666666666666970 |
1100 | 0.35 | 3,142.857142857143117 |
1100 | 0.4 | 2,750.000000000000455 |
1100 | 0.45 | 2,444.444444444444798 |
1100 | 0.5 | 2,200.000000000000455 |
1200 | 0.3 | 4,000.000000000000000 |
1200 | 0.35 | 3,428.571428571428896 |
1200 | 0.4 | 3,000.000000000000455 |
1200 | 0.45 | 2,666.666666666666970 |
1200 | 0.5 | 2,400.000000000000455 |
1300 | 0.3 | 4,333.333333333333940 |
1300 | 0.35 | 3,714.285714285714675 |
1300 | 0.4 | 3,250.000000000000455 |
1300 | 0.45 | 2,888.888888888889142 |
1300 | 0.5 | 2,600.000000000000455 |
1400 | 0.3 | 4,666.666666666666970 |
1400 | 0.35 | 4,000.000000000000455 |
1400 | 0.4 | 3,500.000000000000455 |
1400 | 0.45 | 3,111.111111111111313 |
1400 | 0.5 | 2,800.000000000000455 |
1500 | 0.3 | 5,000.000000000000000 |
1500 | 0.35 | 4,285.714285714286234 |
1500 | 0.4 | 3,750.000000000000455 |
1500 | 0.45 | 3,333.333333333333485 |
1500 | 0.5 | 3,000.000000000000455 |