The formula to calculate Angle of Deviation is:
\[ D = i + e - A \]
Where:
Angle of Deviation is the angle between the incident ray and the emergent ray in the optical axis after passing through a lens or prism in optics.
Let's assume the following values:
Using the formula:
\[ D = 0.698131700797601 + 0.0698131700797601 - 0.610865238197901 \]
Evaluating:
\[ D = 0.15707963267946 \text{ rad} \]
The Angle of Deviation is 0.15707963267946 rad.
| Angle of Incidence (i) | Angle of Emergence (e) | Angle of Prism (A) | Angle of Deviation (D, rad) |
|---|---|---|---|
| 0.6 | 0.0698131700797601 | 0.610865238197901 | 0.058947931882 |
| 0.61 | 0.0698131700797601 | 0.610865238197901 | 0.068947931882 |
| 0.62 | 0.0698131700797601 | 0.610865238197901 | 0.078947931882 |
| 0.63 | 0.0698131700797601 | 0.610865238197901 | 0.088947931882 |
| 0.64 | 0.0698131700797601 | 0.610865238197901 | 0.098947931882 |
| 0.65 | 0.0698131700797601 | 0.610865238197901 | 0.108947931882 |
| 0.66 | 0.0698131700797601 | 0.610865238197901 | 0.118947931882 |
| 0.67 | 0.0698131700797601 | 0.610865238197901 | 0.128947931882 |
| 0.68 | 0.0698131700797601 | 0.610865238197901 | 0.138947931882 |
| 0.69 | 0.0698131700797601 | 0.610865238197901 | 0.148947931882 |
| 0.7 | 0.0698131700797601 | 0.610865238197901 | 0.158947931882 |
| 0.71 | 0.0698131700797601 | 0.610865238197901 | 0.168947931882 |
| 0.72 | 0.0698131700797601 | 0.610865238197901 | 0.178947931882 |
| 0.73 | 0.0698131700797601 | 0.610865238197901 | 0.188947931882 |
| 0.74 | 0.0698131700797601 | 0.610865238197901 | 0.198947931882 |
| 0.75 | 0.0698131700797601 | 0.610865238197901 | 0.208947931882 |
| 0.76 | 0.0698131700797601 | 0.610865238197901 | 0.218947931882 |
| 0.77 | 0.0698131700797601 | 0.610865238197901 | 0.228947931882 |
| 0.78 | 0.0698131700797601 | 0.610865238197901 | 0.238947931882 |
| 0.79 | 0.0698131700797601 | 0.610865238197901 | 0.248947931882 |