The formula to calculate Inclination Angle (Φ) is:
\[ Φ = \tan^{-1}\left(\frac{a_n}{a_t}\right) \]
Where:
Inclination Angle of the line is the angle which a straight line makes with the positive direction of the x-axis measured in the anti-clockwise direction to the part of the line above the x-axis.
Normal Acceleration is the component of acceleration for a point in curvilinear motion that is directed along the principal normal to the trajectory toward the center of curvature.
Tangential Acceleration is defined as the rate of change of tangential velocity of the matter in the circular path.
Let's assume the following values:
Using the formula:
\[ Φ = \tan^{-1}\left(\frac{a_n}{a_t}\right) \]
Evaluating:
\[ Φ = \tan^{-1}\left(\frac{6000}{24}\right) \]
The Inclination Angle is 1.56679634812803 radians.
Normal Acceleration (an) | Tangential Acceleration (at) | Inclination Angle (Φ) |
---|---|---|
5000 | 20 | 1.566796348128025 |
5000 | 22 | 1.566396355189233 |
5000 | 24 | 1.565996363658387 |
5000 | 26 | 1.565596373663469 |
5000 | 28 | 1.565196385332462 |
5000 | 30 | 1.564796398793342 |
5500 | 20 | 1.567159979186455 |
5500 | 22 | 1.566796348128025 |
5500 | 24 | 1.566432718127413 |
5500 | 26 | 1.566069089280776 |
5500 | 28 | 1.565705461684270 |
5500 | 30 | 1.565341835434051 |
6000 | 20 | 1.567463005807160 |
6000 | 22 | 1.567129676560196 |
6000 | 24 | 1.566796348128025 |
6000 | 26 | 1.566463020584715 |
6000 | 28 | 1.566129694004331 |
6000 | 30 | 1.565796368460938 |
6500 | 20 | 1.567719413428129 |
6500 | 22 | 1.567411724334483 |
6500 | 24 | 1.567104035881696 |
6500 | 26 | 1.566796348128025 |
6500 | 28 | 1.566488661131726 |
6500 | 30 | 1.566180974951055 |
7000 | 20 | 1.567939191712254 |
7000 | 22 | 1.567653479999889 |
7000 | 24 | 1.567367768800633 |
7000 | 26 | 1.567082058161130 |
7000 | 28 | 1.566796348128025 |
7000 | 30 | 1.566510638747960 |