The formula to calculate the Area of a Rectangle given Perimeter and Length is:
\[ A = \frac{(P \cdot l) - (2 \cdot l^2)}{2} \]
Where:
The Area of a Rectangle is the total quantity of plane enclosed by the boundary of the Rectangle.
The Perimeter of a Rectangle is the total length of all the boundary lines of the Rectangle.
The Length of a Rectangle is any one of the pair of parallel sides which are longer than the remaining pair of parallel sides.
Let's assume the following values:
Using the formula:
\[ A = \frac{(28 \cdot 8) - (2 \cdot 8^2)}{2} \]
Evaluating:
\[ A = \frac{(28 \cdot 8) - (2 \cdot 8^2)}{2} \]
The Area of the Rectangle is 48 Square Meter.
Perimeter of Rectangle (Meter) | Length of Rectangle (Meter) | Area of Rectangle (Square Meter) |
---|---|---|
24 | 6 | 36.000000000000000 |
24 | 7 | 35.000000000000000 |
24 | 8 | 32.000000000000000 |
24 | 9 | 27.000000000000000 |
24 | 10 | 20.000000000000000 |
26 | 6 | 42.000000000000000 |
26 | 7 | 42.000000000000000 |
26 | 8 | 40.000000000000000 |
26 | 9 | 36.000000000000000 |
26 | 10 | 30.000000000000000 |
28 | 6 | 48.000000000000000 |
28 | 7 | 49.000000000000000 |
28 | 8 | 48.000000000000000 |
28 | 9 | 45.000000000000000 |
28 | 10 | 40.000000000000000 |
30 | 6 | 54.000000000000000 |
30 | 7 | 56.000000000000000 |
30 | 8 | 56.000000000000000 |
30 | 9 | 54.000000000000000 |
30 | 10 | 50.000000000000000 |
32 | 6 | 60.000000000000000 |
32 | 7 | 63.000000000000000 |
32 | 8 | 64.000000000000000 |
32 | 9 | 63.000000000000000 |
32 | 10 | 60.000000000000000 |