The formula to calculate the Chord Length of Circle (lc) is:
\[ lc = 2 \times \sqrt{r^2 - lPerpendicular^2} \]
Where:
Chord Length of Circle is the length of a line segment connecting any two points on the circumference of a Circle.
Radius of Circle is the length of any line segment joining the center and any point on the Circle.
Perpendicular Length to Chord of Circle is the shortest distance from the center to the midpoint of a chord of a Circle.
Let's assume the following values:
Using the formula:
\[ lc = 2 \times \sqrt{r^2 - lPerpendicular^2} \]
Evaluating:
\[ lc = 2 \times \sqrt{5^2 - 3^2} \]
The Chord Length of Circle is 8 meters.
Radius of Circle (meters) | Perpendicular Length to Chord of Circle (meters) | Chord Length of Circle (meters) |
---|---|---|
4 | 2 | 6.928203230275509 |
4 | 2.5 | 6.244997998398398 |
4 | 3 | 5.291502622129181 |
4 | 3.5 | 3.872983346207417 |
4 | 4 | 0.000000000000000 |
4.5 | 2 | 8.062257748298549 |
4.5 | 2.5 | 7.483314773547883 |
4.5 | 3 | 6.708203932499369 |
4.5 | 3.5 | 5.656854249492381 |
4.5 | 4 | 4.123105625617661 |
5 | 2 | 9.165151389911680 |
5 | 2.5 | 8.660254037844387 |
5 | 3 | 8.000000000000000 |
5 | 3.5 | 7.141428428542850 |
5 | 4 | 6.000000000000000 |
5.5 | 2 | 10.246950765959598 |
5.5 | 2.5 | 9.797958971132712 |
5.5 | 3 | 9.219544457292887 |
5.5 | 3.5 | 8.485281374238570 |
5.5 | 4 | 7.549834435270750 |
6 | 2 | 11.313708498984761 |
6 | 2.5 | 10.908712114635714 |
6 | 3 | 10.392304845413264 |
6 | 3.5 | 9.746794344808963 |
6 | 4 | 8.944271909999159 |