The formula to calculate the Coefficient of Kurtosis (K) is:
\[ K = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left( \frac{(x_i - \mu)^4}{\sigma^4} \right) - \frac{3(n-1)^2}{(n-2)(n-3)} \]
Where:
Let's say the data points are 2, 4, 6, 8, and 10. Using the formula:
\[ K = \frac{5(5+1)}{(5-1)(5-2)(5-3)} \sum \left( \frac{(x_i - \mu)^4}{\sigma^4} \right) - \frac{3(5-1)^2}{(5-2)(5-3)} \]
We get:
\[ K \approx 2.62 \]
So, the coefficient of kurtosis is approximately 2.62.