The formula to calculate the discount given the discount rate and list price is:
\[ \text{Disc} = \text{DR} \times \text{LP} \]
Where:
The discount is the difference between the selling price and the price paid for the item.
The discount rate is the interest rate charged to commercial banks and other depository institutions for loans received from the Federal Reserve Bank’s discount window.
The list price is the price of an article as shown in a list issued by the manufacturer.
Let's assume the following values:
Using the formula:
\[ \text{Disc} = 0.12 \times 51.5 \approx 6.18 \]
The discount is approximately 6.18.
Discount Rate | List Price | Discount |
---|---|---|
0.1 | 50 | 5.0000 |
0.1 | 50.5 | 5.0500 |
0.1 | 51 | 5.1000 |
0.1 | 51.5 | 5.1500 |
0.1 | 52 | 5.2000 |
0.1 | 52.5 | 5.2500 |
0.1 | 53 | 5.3000 |
0.1 | 53.5 | 5.3500 |
0.1 | 54 | 5.4000 |
0.1 | 54.5 | 5.4500 |
0.1 | 55 | 5.5000 |
0.11 | 50 | 5.5000 |
0.11 | 50.5 | 5.5550 |
0.11 | 51 | 5.6100 |
0.11 | 51.5 | 5.6650 |
0.11 | 52 | 5.7200 |
0.11 | 52.5 | 5.7750 |
0.11 | 53 | 5.8300 |
0.11 | 53.5 | 5.8850 |
0.11 | 54 | 5.9400 |
0.11 | 54.5 | 5.9950 |
0.11 | 55 | 6.0500 |
0.12 | 50 | 6.0000 |
0.12 | 50.5 | 6.0600 |
0.12 | 51 | 6.1200 |
0.12 | 51.5 | 6.1800 |
0.12 | 52 | 6.2400 |
0.12 | 52.5 | 6.3000 |
0.12 | 53 | 6.3600 |
0.12 | 53.5 | 6.4200 |
0.12 | 54 | 6.4800 |
0.12 | 54.5 | 6.5400 |
0.12 | 55 | 6.6000 |
0.13 | 50 | 6.5000 |
0.13 | 50.5 | 6.5650 |
0.13 | 51 | 6.6300 |
0.13 | 51.5 | 6.6950 |
0.13 | 52 | 6.7600 |
0.13 | 52.5 | 6.8250 |
0.13 | 53 | 6.8900 |
0.13 | 53.5 | 6.9550 |
0.13 | 54 | 7.0200 |
0.13 | 54.5 | 7.0850 |
0.13 | 55 | 7.1500 |
0.14 | 50 | 7.0000 |
0.14 | 50.5 | 7.0700 |
0.14 | 51 | 7.1400 |
0.14 | 51.5 | 7.2100 |
0.14 | 52 | 7.2800 |
0.14 | 52.5 | 7.3500 |
0.14 | 53 | 7.4200 |
0.14 | 53.5 | 7.4900 |
0.14 | 54 | 7.5600 |
0.14 | 54.5 | 7.6300 |
0.14 | 55 | 7.7000 |