The formula to calculate Kinetic Energy of System after Inelastic Collision (Ek) is:
\[ Ek = \frac{(m_1 + m_2) \cdot v^2}{2} \]
Where:
Kinetic Energy of system after inelastic collision is the sum of the kinetic energies of all the particles in the system.
Mass of body A is the measure of the quantity of matter that a body or an object contains.
Mass of body B is the measure of the quantity of matter that a body or an object contains.
Final Speed of A and B after inelastic collision is the last velocity of a given object after a period of time.
Let's assume the following values:
Using the formula:
\[ Ek = \frac{(m_1 + m_2) \cdot v^2}{2} \]
Evaluating:
\[ Ek = \frac{(30 + 13) \cdot 21^2}{2} \]
The Kinetic Energy of System after Inelastic Collision is 9481.5 Joules.
Mass of Body A (m1, kg) | Mass of Body B (m2, kg) | Final Speed of A and B (v, m/s) | Kinetic Energy (Ek, Joules) |
---|---|---|---|
25 | 10 | 20 | 7,000.0000 |
25 | 10 | 22 | 8,470.0000 |
25 | 10 | 24 | 10,080.0000 |
25 | 12 | 20 | 7,400.0000 |
25 | 12 | 22 | 8,954.0000 |
25 | 12 | 24 | 10,656.0000 |
25 | 14 | 20 | 7,800.0000 |
25 | 14 | 22 | 9,438.0000 |
25 | 14 | 24 | 11,232.0000 |
30 | 10 | 20 | 8,000.0000 |
30 | 10 | 22 | 9,680.0000 |
30 | 10 | 24 | 11,520.0000 |
30 | 12 | 20 | 8,400.0000 |
30 | 12 | 22 | 10,164.0000 |
30 | 12 | 24 | 12,096.0000 |
30 | 14 | 20 | 8,800.0000 |
30 | 14 | 22 | 10,648.0000 |
30 | 14 | 24 | 12,672.0000 |
35 | 10 | 20 | 9,000.0000 |
35 | 10 | 22 | 10,890.0000 |
35 | 10 | 24 | 12,960.0000 |
35 | 12 | 20 | 9,400.0000 |
35 | 12 | 22 | 11,374.0000 |
35 | 12 | 24 | 13,536.0000 |
35 | 14 | 20 | 9,800.0000 |
35 | 14 | 22 | 11,858.0000 |
35 | 14 | 24 | 14,112.0000 |