The formula to calculate the Edge Length of the Base of a Right Square Pyramid given its Volume is:
\[ l_e = \sqrt{\frac{3V}{h}} \]
The Edge Length of the Base of a Right Square Pyramid is the length of the straight line connecting any two adjacent vertices of the base of the Right Square Pyramid. The Volume of a Right Square Pyramid is the total quantity of three-dimensional space enclosed by the surface of the Right Square Pyramid. The Height of a Right Square Pyramid is the length of the perpendicular from the apex to the base of the Right Square Pyramid.
Let's assume the following values:
Using the formula:
\[ l_e = \sqrt{\frac{3 \times 500}{15}} = 10 \text{ Meter} \]
The Edge Length of the Base of the Right Square Pyramid is 10 Meter.
Volume (Cubic Meter) | Height (Meter) | Edge Length (Meter) |
---|---|---|
450 | 15 | 9.486832980505138 |
460 | 15 | 9.591663046625438 |
470 | 15 | 9.695359714832659 |
480 | 15 | 9.797958971132712 |
490 | 15 | 9.899494936611665 |
500 | 15 | 10.000000000000000 |
510 | 15 | 10.099504938362077 |
520 | 15 | 10.198039027185569 |
530 | 15 | 10.295630140987001 |
540 | 15 | 10.392304845413264 |
550 | 15 | 10.488088481701515 |