Electric Field for Uniformly Charged Ring Calculator

Calculate Electric Field







Formula

The formula to calculate the Electric Field (E) is:

\[ E = \frac{[Coulomb] \cdot Q \cdot x}{(r_{ring}^2 + x^2)^{3/2}} \]

Where:

Definition

The Electric Field is the force per unit charge at a particular point in space around a distribution of electric charges.

Charge is a fundamental property of matter that causes objects to experience a force when placed in an electrostatic field.

Distance from Center Point is the length of the line segment from the center of an electrostatic system to a point of interest.

Radius of Ring is the distance from the center of the ring to its edge, used to calculate electrostatic potential and electric field.

How to calculate Electric Field

Let's assume the following values:

Using the formula:

\[ E = \frac{[Coulomb] \cdot 0.3 \cdot 8}{(329.941^2 + 8^2)^{3/2}} \]

Evaluating:

\[ E \approx 600.013352636787 \]

The Electric Field is approximately 600.013352636787 Volt per Meter.

Conversion Chart

Charge (Q) (Coulombs) Distance (x) (Meters) Radius (rring) (Meters) Electric Field (E) (Volt per Meter)
0.1 5 300 166.365861262722
0.1 5 329.941 125.069225925053
0.1 5 350 104.778418964183
0.1 8 300 266.012499192616
0.1 8 329.941 200.003298319171
0.1 8 350 167.565459248054
0.1 10 300 332.316355955426
0.1 10 329.941 249.880233621011
0.1 10 350 209.364574156735
0.3 5 300 499.097583788165
0.3 5 329.941 375.207677775159
0.3 5 350 314.335256892550
0.3 8 300 798.037497577848
0.3 8 329.941 600.009894957512
0.3 8 350 502.696377744161
0.3 10 300 996.949067866276
0.3 10 329.941 749.640700863035
0.3 10 350 628.093722470205
0.5 5 300 831.829306313608
0.5 5 329.941 625.346129625265
0.5 5 350 523.892094820917
0.5 8 300 1,330.062495963080
0.5 8 329.941 1,000.016491595853
0.5 8 350 837.827296240268
0.5 10 300 1,661.581779777127
0.5 10 329.941 1,249.401168105057
0.5 10 350 1,046.822870783674