The formula to calculate the Electric Field (E) is:
\[ E = \frac{[Coulomb] \cdot Q \cdot x}{(r_{ring}^2 + x^2)^{3/2}} \]
Where:
The Electric Field is the force per unit charge at a particular point in space around a distribution of electric charges.
Charge is a fundamental property of matter that causes objects to experience a force when placed in an electrostatic field.
Distance from Center Point is the length of the line segment from the center of an electrostatic system to a point of interest.
Radius of Ring is the distance from the center of the ring to its edge, used to calculate electrostatic potential and electric field.
Let's assume the following values:
Using the formula:
\[ E = \frac{[Coulomb] \cdot 0.3 \cdot 8}{(329.941^2 + 8^2)^{3/2}} \]
Evaluating:
\[ E \approx 600.013352636787 \]
The Electric Field is approximately 600.013352636787 Volt per Meter.
Charge (Q) (Coulombs) | Distance (x) (Meters) | Radius (rring) (Meters) | Electric Field (E) (Volt per Meter) |
---|---|---|---|
0.1 | 5 | 300 | 166.365861262722 |
0.1 | 5 | 329.941 | 125.069225925053 |
0.1 | 5 | 350 | 104.778418964183 |
0.1 | 8 | 300 | 266.012499192616 |
0.1 | 8 | 329.941 | 200.003298319171 |
0.1 | 8 | 350 | 167.565459248054 |
0.1 | 10 | 300 | 332.316355955426 |
0.1 | 10 | 329.941 | 249.880233621011 |
0.1 | 10 | 350 | 209.364574156735 |
0.3 | 5 | 300 | 499.097583788165 |
0.3 | 5 | 329.941 | 375.207677775159 |
0.3 | 5 | 350 | 314.335256892550 |
0.3 | 8 | 300 | 798.037497577848 |
0.3 | 8 | 329.941 | 600.009894957512 |
0.3 | 8 | 350 | 502.696377744161 |
0.3 | 10 | 300 | 996.949067866276 |
0.3 | 10 | 329.941 | 749.640700863035 |
0.3 | 10 | 350 | 628.093722470205 |
0.5 | 5 | 300 | 831.829306313608 |
0.5 | 5 | 329.941 | 625.346129625265 |
0.5 | 5 | 350 | 523.892094820917 |
0.5 | 8 | 300 | 1,330.062495963080 |
0.5 | 8 | 329.941 | 1,000.016491595853 |
0.5 | 8 | 350 | 837.827296240268 |
0.5 | 10 | 300 | 1,661.581779777127 |
0.5 | 10 | 329.941 | 1,249.401168105057 |
0.5 | 10 | 350 | 1,046.822870783674 |