The formula to calculate the Hypotenuse (H) is:
\[ H = \sqrt{h^2 + B^2} \]
Where:
The Hypotenuse of a Right Angled Triangle is the longest side of the triangle and is opposite the right angle (90 degrees).
The Height of the Right Angled Triangle is the length of the perpendicular leg adjacent to the base.
The Base of the Right Angled Triangle is the length of the base leg adjacent to the perpendicular leg.
Let's assume the following values:
Using the formula:
\[ H = \sqrt{h^2 + B^2} \]
Evaluating:
\[ H = \sqrt{8^2 + 15^2} \]
The Hypotenuse is 17 m.
Height of Right Angled Triangle (m) | Base of Right Angled Triangle (m) | Hypotenuse (m) |
---|---|---|
5 | 10 | 11.1803 |
5 | 12 | 13.0000 |
5 | 14 | 14.8661 |
5 | 16 | 16.7631 |
5 | 18 | 18.6815 |
5 | 20 | 20.6155 |
6 | 10 | 11.6619 |
6 | 12 | 13.4164 |
6 | 14 | 15.2315 |
6 | 16 | 17.0880 |
6 | 18 | 18.9737 |
6 | 20 | 20.8806 |
7 | 10 | 12.2066 |
7 | 12 | 13.8924 |
7 | 14 | 15.6525 |
7 | 16 | 17.4642 |
7 | 18 | 19.3132 |
7 | 20 | 21.1896 |
8 | 10 | 12.8062 |
8 | 12 | 14.4222 |
8 | 14 | 16.1245 |
8 | 16 | 17.8885 |
8 | 18 | 19.6977 |
8 | 20 | 21.5407 |
9 | 10 | 13.4536 |
9 | 12 | 15.0000 |
9 | 14 | 16.6433 |
9 | 16 | 18.3576 |
9 | 18 | 20.1246 |
9 | 20 | 21.9317 |
10 | 10 | 14.1421 |
10 | 12 | 15.6205 |
10 | 14 | 17.2047 |
10 | 16 | 18.8680 |
10 | 18 | 20.5913 |
10 | 20 | 22.3607 |