The formula to calculate the number of elements in the intersection of two sets \(A\) and \(B\) is:
\[ n(A \cap B) = n(A) + n(B) - n(A \cup B) \]
Where:
The number of elements in the intersection of two sets \(A\) and \(B\) is the total count of common elements present in both sets.
Let's assume the following values:
Using the formula:
\[ n(A \cap B) = 10 + 15 - 19 \]
Evaluating:
\[ n(A \cap B) = 6 \]
The number of elements in the intersection of Sets A and B is 6.
Number of Elements in Set A | Number of Elements in Set B | Number of Elements in Union of A and B | Number of Elements in Intersection of A and B |
---|---|---|---|
8 | 13 | 18 | 3.00 |
8 | 13 | 19 | 2.00 |
8 | 13 | 20 | 1.00 |
8 | 13 | 21 | 0.00 |
8 | 13 | 22 | -1.00 |
8 | 14 | 18 | 4.00 |
8 | 14 | 19 | 3.00 |
8 | 14 | 20 | 2.00 |
8 | 14 | 21 | 1.00 |
8 | 14 | 22 | 0.00 |
8 | 15 | 18 | 5.00 |
8 | 15 | 19 | 4.00 |
8 | 15 | 20 | 3.00 |
8 | 15 | 21 | 2.00 |
8 | 15 | 22 | 1.00 |
8 | 16 | 18 | 6.00 |
8 | 16 | 19 | 5.00 |
8 | 16 | 20 | 4.00 |
8 | 16 | 21 | 3.00 |
8 | 16 | 22 | 2.00 |
8 | 17 | 18 | 7.00 |
8 | 17 | 19 | 6.00 |
8 | 17 | 20 | 5.00 |
8 | 17 | 21 | 4.00 |
8 | 17 | 22 | 3.00 |
9 | 13 | 18 | 4.00 |
9 | 13 | 19 | 3.00 |
9 | 13 | 20 | 2.00 |
9 | 13 | 21 | 1.00 |
9 | 13 | 22 | 0.00 |
9 | 14 | 18 | 5.00 |
9 | 14 | 19 | 4.00 |
9 | 14 | 20 | 3.00 |
9 | 14 | 21 | 2.00 |
9 | 14 | 22 | 1.00 |
9 | 15 | 18 | 6.00 |
9 | 15 | 19 | 5.00 |
9 | 15 | 20 | 4.00 |
9 | 15 | 21 | 3.00 |
9 | 15 | 22 | 2.00 |
9 | 16 | 18 | 7.00 |
9 | 16 | 19 | 6.00 |
9 | 16 | 20 | 5.00 |
9 | 16 | 21 | 4.00 |
9 | 16 | 22 | 3.00 |
9 | 17 | 18 | 8.00 |
9 | 17 | 19 | 7.00 |
9 | 17 | 20 | 6.00 |
9 | 17 | 21 | 5.00 |
9 | 17 | 22 | 4.00 |
10 | 13 | 18 | 5.00 |
10 | 13 | 19 | 4.00 |
10 | 13 | 20 | 3.00 |
10 | 13 | 21 | 2.00 |
10 | 13 | 22 | 1.00 |
10 | 14 | 18 | 6.00 |
10 | 14 | 19 | 5.00 |
10 | 14 | 20 | 4.00 |
10 | 14 | 21 | 3.00 |
10 | 14 | 22 | 2.00 |
10 | 15 | 18 | 7.00 |
10 | 15 | 19 | 6.00 |
10 | 15 | 20 | 5.00 |
10 | 15 | 21 | 4.00 |
10 | 15 | 22 | 3.00 |
10 | 16 | 18 | 8.00 |
10 | 16 | 19 | 7.00 |
10 | 16 | 20 | 6.00 |
10 | 16 | 21 | 5.00 |
10 | 16 | 22 | 4.00 |
10 | 17 | 18 | 9.00 |
10 | 17 | 19 | 8.00 |
10 | 17 | 20 | 7.00 |
10 | 17 | 21 | 6.00 |
10 | 17 | 22 | 5.00 |
11 | 13 | 18 | 6.00 |
11 | 13 | 19 | 5.00 |
11 | 13 | 20 | 4.00 |
11 | 13 | 21 | 3.00 |
11 | 13 | 22 | 2.00 |
11 | 14 | 18 | 7.00 |
11 | 14 | 19 | 6.00 |
11 | 14 | 20 | 5.00 |
11 | 14 | 21 | 4.00 |
11 | 14 | 22 | 3.00 |
11 | 15 | 18 | 8.00 |
11 | 15 | 19 | 7.00 |
11 | 15 | 20 | 6.00 |
11 | 15 | 21 | 5.00 |
11 | 15 | 22 | 4.00 |
11 | 16 | 18 | 9.00 |
11 | 16 | 19 | 8.00 |
11 | 16 | 20 | 7.00 |
11 | 16 | 21 | 6.00 |
11 | 16 | 22 | 5.00 |
11 | 17 | 18 | 10.00 |
11 | 17 | 19 | 9.00 |
11 | 17 | 20 | 8.00 |
11 | 17 | 21 | 7.00 |
11 | 17 | 22 | 6.00 |
12 | 13 | 18 | 7.00 |
12 | 13 | 19 | 6.00 |
12 | 13 | 20 | 5.00 |
12 | 13 | 21 | 4.00 |
12 | 13 | 22 | 3.00 |
12 | 14 | 18 | 8.00 |
12 | 14 | 19 | 7.00 |
12 | 14 | 20 | 6.00 |
12 | 14 | 21 | 5.00 |
12 | 14 | 22 | 4.00 |
12 | 15 | 18 | 9.00 |
12 | 15 | 19 | 8.00 |
12 | 15 | 20 | 7.00 |
12 | 15 | 21 | 6.00 |
12 | 15 | 22 | 5.00 |
12 | 16 | 18 | 10.00 |
12 | 16 | 19 | 9.00 |
12 | 16 | 20 | 8.00 |
12 | 16 | 21 | 7.00 |
12 | 16 | 22 | 6.00 |
12 | 17 | 18 | 11.00 |
12 | 17 | 19 | 10.00 |
12 | 17 | 20 | 9.00 |
12 | 17 | 21 | 8.00 |
12 | 17 | 22 | 7.00 |