The formula to calculate the Lateral Edge Length of a Right Square Pyramid given its Slant Height is:
\[ l_e(\text{Lateral}) = \sqrt{\frac{l_e(\text{Base})^2}{4} + h_{\text{slant}}^2} \]
The Lateral Edge Length of a Right Square Pyramid is the length of the straight line connecting any base vertex to the apex of the Right Square Pyramid. The Edge Length of the Base of a Right Square Pyramid is the length of the straight line connecting any two adjacent vertices of the base of the Right Square Pyramid. The Slant Height of a Right Square Pyramid is the length measured along the lateral face from the base to the apex of the Right Square Pyramid along the center of the face.
Let's assume the following values:
Using the formula:
\[ l_e(\text{Lateral}) = \sqrt{\frac{10^2}{4} + 16^2} = 16.7630546142402 \text{ Meter} \]
The Lateral Edge Length of the Right Square Pyramid is 16.7630546142402 Meter.
Edge Length (Meter) | Slant Height (Meter) | Lateral Edge Length (Meter) |
---|---|---|
9 | 16 | 16.620770138594661 |
9.1 | 16 | 16.634377054762226 |
9.2 | 16 | 16.648123017325407 |
9.3 | 16 | 16.662007682149230 |
9.4 | 16 | 16.676030702778164 |
9.5 | 16 | 16.690191730474517 |
9.6 | 16 | 16.704490414256878 |
9.7 | 16 | 16.718926400938546 |
9.8 | 16 | 16.733499335165970 |
9.9 | 16 | 16.748208859457179 |
10 | 16 | 16.763054614240211 |
10.1 | 16 | 16.778036237891488 |
10.2 | 16 | 16.793153366774209 |
10.3 | 16 | 16.808405635276653 |
10.4 | 16 | 16.823792675850470 |
10.5 | 16 | 16.839314119048911 |
10.6 | 16 | 16.854969593564977 |
10.7 | 16 | 16.870758726269543 |
10.8 | 16 | 16.886681142249355 |
10.9 | 16 | 16.902736464844974 |
11 | 16 | 16.918924315688628 |