The formula to calculate the Perimeter of a Right Angled Triangle (P) is:
\[ P = h + B + \sqrt{h^2 + B^2} \]
Where:
The Perimeter of a Right Angled Triangle is the total distance around the edge of the Right Angled Triangle.
The Height of a Right Angled Triangle is the length of the perpendicular leg of the Right Angled Triangle, adjacent to the base.
The Base of a Right Angled Triangle is the length of the base leg of the Right Angled Triangle, adjacent to the perpendicular leg.
Let's assume the following values:
Using the formula:
\[ P = h + B + \sqrt{h^2 + B^2} \]
Evaluating:
\[ P = 8 + 15 + \sqrt{8^2 + 15^2} \]
The Perimeter of the Right Angled Triangle is 40 meters.
| Height | Base | Perimeter |
|---|---|---|
| 7 | 14 | 36.65 |
| 7 | 14.5 | 37.60 |
| 7 | 15 | 38.55 |
| 7 | 15.5 | 39.51 |
| 7 | 16 | 40.46 |
| 7.5 | 14 | 37.38 |
| 7.5 | 14.5 | 38.32 |
| 7.5 | 15 | 39.27 |
| 7.5 | 15.5 | 40.22 |
| 7.5 | 16 | 41.17 |
| 8 | 14 | 38.12 |
| 8 | 14.5 | 39.06 |
| 8 | 15 | 40.00 |
| 8 | 15.5 | 40.94 |
| 8 | 16 | 41.89 |
| 8.5 | 14 | 38.88 |
| 8.5 | 14.5 | 39.81 |
| 8.5 | 15 | 40.74 |
| 8.5 | 15.5 | 41.68 |
| 8.5 | 16 | 42.62 |
| 9 | 14 | 39.64 |
| 9 | 14.5 | 40.57 |
| 9 | 15 | 41.49 |
| 9 | 15.5 | 42.42 |
| 9 | 16 | 43.36 |