To calculate the Polar Area (PA):
\[ PA = \frac{1}{2} \times \left(\frac{a}{57.2958}\right) \times r^2 \]
Where:
The polar area is the area swept out by a radius vector as it rotates through an angle in a polar coordinate system. The formula provided calculates this area given a specific angle and radius.
Let's assume the following values:
Using the formula:
Step 1: Convert the angle to radians:
\[ a_{rad} = \frac{60}{57.2958} = 1.0472 \, radians \]
Step 2: Calculate the Polar Area:
\[ PA = \frac{1}{2} \times 1.0472 \times 5^2 = 13.09 \, square \, units \]
The Polar Area is 13.09 square units.
Let's assume the following values:
Using the formula:
Step 1: Convert the angle to radians:
\[ a_{rad} = \frac{90}{57.2958} = 1.5708 \, radians \]
Step 2: Calculate the Polar Area:
\[ PA = \frac{1}{2} \times 1.5708 \times 3^2 = 7.07 \, square \, units \]
The Polar Area is 7.07 square units.