The formula to calculate Potential Energy (PE) is:
\[ PE = M \cdot g \cdot h \]
Where:
Potential Energy is the energy that is stored in an object due to its position relative to some zero position.
Mass is the quantity of matter in a body regardless of its volume or of any forces acting on it.
Acceleration due to Gravity is acceleration gained by an object because of gravitational force.
Height can refer to the vertical dimension of a material or a component.
Let's assume the following values:
Using the formula:
\[ PE = M \cdot g \cdot h \]
Evaluating:
\[ PE = 35.45 \cdot 9.8 \cdot 12 \]
The Potential Energy is 4168.92 Joules.
Mass (Kilograms) | Acceleration due to Gravity (m/s²) | Height (Meters) | Potential Energy (Joules) |
---|---|---|---|
30 | 9.7 | 10 | 2,910.00 |
30 | 9.7 | 11 | 3,201.00 |
30 | 9.7 | 12 | 3,492.00 |
30 | 9.7 | 13 | 3,783.00 |
30 | 9.7 | 14 | 4,074.00 |
30 | 9.75 | 10 | 2,925.00 |
30 | 9.75 | 11 | 3,217.50 |
30 | 9.75 | 12 | 3,510.00 |
30 | 9.75 | 13 | 3,802.50 |
30 | 9.75 | 14 | 4,095.00 |
30 | 9.8 | 10 | 2,940.00 |
30 | 9.8 | 11 | 3,234.00 |
30 | 9.8 | 12 | 3,528.00 |
30 | 9.8 | 13 | 3,822.00 |
30 | 9.8 | 14 | 4,116.00 |
30 | 9.85 | 10 | 2,955.00 |
30 | 9.85 | 11 | 3,250.50 |
30 | 9.85 | 12 | 3,546.00 |
30 | 9.85 | 13 | 3,841.50 |
30 | 9.85 | 14 | 4,137.00 |
32 | 9.7 | 10 | 3,104.00 |
32 | 9.7 | 11 | 3,414.40 |
32 | 9.7 | 12 | 3,724.80 |
32 | 9.7 | 13 | 4,035.20 |
32 | 9.7 | 14 | 4,345.60 |
32 | 9.75 | 10 | 3,120.00 |
32 | 9.75 | 11 | 3,432.00 |
32 | 9.75 | 12 | 3,744.00 |
32 | 9.75 | 13 | 4,056.00 |
32 | 9.75 | 14 | 4,368.00 |
32 | 9.8 | 10 | 3,136.00 |
32 | 9.8 | 11 | 3,449.60 |
32 | 9.8 | 12 | 3,763.20 |
32 | 9.8 | 13 | 4,076.80 |
32 | 9.8 | 14 | 4,390.40 |
32 | 9.85 | 10 | 3,152.00 |
32 | 9.85 | 11 | 3,467.20 |
32 | 9.85 | 12 | 3,782.40 |
32 | 9.85 | 13 | 4,097.60 |
32 | 9.85 | 14 | 4,412.80 |
34 | 9.7 | 10 | 3,298.00 |
34 | 9.7 | 11 | 3,627.80 |
34 | 9.7 | 12 | 3,957.60 |
34 | 9.7 | 13 | 4,287.40 |
34 | 9.7 | 14 | 4,617.20 |
34 | 9.75 | 10 | 3,315.00 |
34 | 9.75 | 11 | 3,646.50 |
34 | 9.75 | 12 | 3,978.00 |
34 | 9.75 | 13 | 4,309.50 |
34 | 9.75 | 14 | 4,641.00 |
34 | 9.8 | 10 | 3,332.00 |
34 | 9.8 | 11 | 3,665.20 |
34 | 9.8 | 12 | 3,998.40 |
34 | 9.8 | 13 | 4,331.60 |
34 | 9.8 | 14 | 4,664.80 |
34 | 9.85 | 10 | 3,349.00 |
34 | 9.85 | 11 | 3,683.90 |
34 | 9.85 | 12 | 4,018.80 |
34 | 9.85 | 13 | 4,353.70 |
34 | 9.85 | 14 | 4,688.60 |
36 | 9.7 | 10 | 3,492.00 |
36 | 9.7 | 11 | 3,841.20 |
36 | 9.7 | 12 | 4,190.40 |
36 | 9.7 | 13 | 4,539.60 |
36 | 9.7 | 14 | 4,888.80 |
36 | 9.75 | 10 | 3,510.00 |
36 | 9.75 | 11 | 3,861.00 |
36 | 9.75 | 12 | 4,212.00 |
36 | 9.75 | 13 | 4,563.00 |
36 | 9.75 | 14 | 4,914.00 |
36 | 9.8 | 10 | 3,528.00 |
36 | 9.8 | 11 | 3,880.80 |
36 | 9.8 | 12 | 4,233.60 |
36 | 9.8 | 13 | 4,586.40 |
36 | 9.8 | 14 | 4,939.20 |
36 | 9.85 | 10 | 3,546.00 |
36 | 9.85 | 11 | 3,900.60 |
36 | 9.85 | 12 | 4,255.20 |
36 | 9.85 | 13 | 4,609.80 |
36 | 9.85 | 14 | 4,964.40 |
38 | 9.7 | 10 | 3,686.00 |
38 | 9.7 | 11 | 4,054.60 |
38 | 9.7 | 12 | 4,423.20 |
38 | 9.7 | 13 | 4,791.80 |
38 | 9.7 | 14 | 5,160.40 |
38 | 9.75 | 10 | 3,705.00 |
38 | 9.75 | 11 | 4,075.50 |
38 | 9.75 | 12 | 4,446.00 |
38 | 9.75 | 13 | 4,816.50 |
38 | 9.75 | 14 | 5,187.00 |
38 | 9.8 | 10 | 3,724.00 |
38 | 9.8 | 11 | 4,096.40 |
38 | 9.8 | 12 | 4,468.80 |
38 | 9.8 | 13 | 4,841.20 |
38 | 9.8 | 14 | 5,213.60 |
38 | 9.85 | 10 | 3,743.00 |
38 | 9.85 | 11 | 4,117.30 |
38 | 9.85 | 12 | 4,491.60 |
38 | 9.85 | 13 | 4,865.90 |
38 | 9.85 | 14 | 5,240.20 |
40 | 9.7 | 10 | 3,880.00 |
40 | 9.7 | 11 | 4,268.00 |
40 | 9.7 | 12 | 4,656.00 |
40 | 9.7 | 13 | 5,044.00 |
40 | 9.7 | 14 | 5,432.00 |
40 | 9.75 | 10 | 3,900.00 |
40 | 9.75 | 11 | 4,290.00 |
40 | 9.75 | 12 | 4,680.00 |
40 | 9.75 | 13 | 5,070.00 |
40 | 9.75 | 14 | 5,460.00 |
40 | 9.8 | 10 | 3,920.00 |
40 | 9.8 | 11 | 4,312.00 |
40 | 9.8 | 12 | 4,704.00 |
40 | 9.8 | 13 | 5,096.00 |
40 | 9.8 | 14 | 5,488.00 |
40 | 9.85 | 10 | 3,940.00 |
40 | 9.85 | 11 | 4,334.00 |
40 | 9.85 | 12 | 4,728.00 |
40 | 9.85 | 13 | 5,122.00 |
40 | 9.85 | 14 | 5,516.00 |