The formula to calculate the Pressure is:
\[ P_a = \gamma_1 \cdot L \cdot \sin(\Theta) \]
Pressure a is pressure at a point a. Specific weight 1 is the specific weight of the fluid 1. Length of inclined manometer is defined as the length of the liquid present in the manometer wing. Angle is the angle between the inclined manometer tube and surface.
Let's assume the following values:
Using the formula:
\[ P_a = 1342 \cdot 0.17 \cdot \sin(0.610865238197901) = 130.855728189106 \text{ Pa} \]
Specific Weight 1 (γ1) | Length of Inclined Manometer (L) | Angle (Θ) | Pressure (Pa) |
---|---|---|---|
1342 N/m³ | 0.15 m | 0.610865238197901 rad | 115.460936637447 Pa |
1342 N/m³ | 0.16 m | 0.610865238197901 rad | 123.158332413276 Pa |
1342 N/m³ | 0.17 m | 0.610865238197901 rad | 130.855728189106 Pa |
1342 N/m³ | 0.18 m | 0.610865238197901 rad | 138.553123964936 Pa |
1342 N/m³ | 0.19 m | 0.610865238197901 rad | 146.250519740766 Pa |