The formula to calculate Strain (ε) is:
\[ \epsilon = \frac{\Delta L}{L} \]
Where:
Strain is a measure of deformation representing the displacement between particles in a material body.
Change in Length is after the application of force, change in the dimensions of the object.
Length is the measurement or extent of something from end to end.
Let's assume the following values:
Using the formula:
\[ \epsilon = \frac{\Delta L}{L} \]
Evaluating:
\[ \epsilon = \frac{2.2}{5.5} \]
The Strain is 0.4.
Change in Length (meters) | Length (meters) | Strain |
---|---|---|
2 | 5 | 0.400000000000000 |
2 | 5.5 | 0.363636363636364 |
2 | 6 | 0.333333333333333 |
2.2 | 5 | 0.440000000000000 |
2.2 | 5.5 | 0.400000000000000 |
2.2 | 6 | 0.366666666666667 |
2.4 | 5 | 0.480000000000000 |
2.4 | 5.5 | 0.436363636363636 |
2.4 | 6 | 0.400000000000000 |
2.6 | 5 | 0.520000000000000 |
2.6 | 5.5 | 0.472727272727273 |
2.6 | 6 | 0.433333333333333 |
2.8 | 5 | 0.560000000000000 |
2.8 | 5.5 | 0.509090909090909 |
2.8 | 6 | 0.466666666666667 |