The formula to calculate the exterior angle of a regular polygon is:
\[ \angle_{\text{Exterior}} = \frac{2 \pi}{N_S} \]
Where:
The exterior angle of a regular polygon is the angle between one side of the polygon and the line extending from the next side of the polygon.
The number of sides of a regular polygon denotes the total number of sides of the polygon. The number of sides is used to classify the types of polygons.
Let's assume the following values:
Using the formula:
\[ \angle_{\text{Exterior}} = \frac{2 \pi}{8} = 0.785398163397448 \text{ radians} \]
The exterior angle is 0.785398163397448 radians.
Number of Sides | Exterior Angle (radians) |
---|---|
3 | 2.094395102393195 |
4 | 1.570796326794897 |
5 | 1.256637061435917 |
6 | 1.047197551196598 |
7 | 0.897597901025655 |
8 | 0.785398163397448 |
9 | 0.698131700797732 |
10 | 0.628318530717959 |
11 | 0.571198664289053 |
12 | 0.523598775598299 |