Exterior Angle of Regular Polygon Calculator

Calculate Exterior Angle of Regular Polygon



Formula

The formula to calculate the exterior angle of a regular polygon is:

\[ \angle_{\text{Exterior}} = \frac{2 \pi}{N_S} \]

Where:

Definition

The exterior angle of a regular polygon is the angle between one side of the polygon and the line extending from the next side of the polygon.

The number of sides of a regular polygon denotes the total number of sides of the polygon. The number of sides is used to classify the types of polygons.

Example Calculation

Let's assume the following values:

Using the formula:

\[ \angle_{\text{Exterior}} = \frac{2 \pi}{8} = 0.785398163397448 \text{ radians} \]

The exterior angle is 0.785398163397448 radians.

Conversion Chart

Number of Sides Exterior Angle (radians)
3 2.094395102393195
4 1.570796326794897
5 1.256637061435917
6 1.047197551196598
7 0.897597901025655
8 0.785398163397448
9 0.698131700797732
10 0.628318530717959
11 0.571198664289053
12 0.523598775598299